3.2.32 \(\int \frac {(a+a \cos (c+d x)) (A+C \cos ^2(c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\) [132]

3.2.32.1 Optimal result
3.2.32.2 Mathematica [C] (warning: unable to verify)
3.2.32.3 Rubi [A] (verified)
3.2.32.4 Maple [B] (verified)
3.2.32.5 Fricas [C] (verification not implemented)
3.2.32.6 Sympy [F(-1)]
3.2.32.7 Maxima [F]
3.2.32.8 Giac [F]
3.2.32.9 Mupad [B] (verification not implemented)

3.2.32.1 Optimal result

Integrand size = 33, antiderivative size = 132 \[ \int \frac {(a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {2 a (3 A+5 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a (A+3 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a (3 A+5 C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \]

output
-2/5*a*(3*A+5*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE 
(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*a*(A+3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/ 
cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/5*a*A*sin(d*x 
+c)/d/cos(d*x+c)^(5/2)+2/3*a*A*sin(d*x+c)/d/cos(d*x+c)^(3/2)+2/5*a*(3*A+5* 
C)*sin(d*x+c)/d/cos(d*x+c)^(1/2)
 
3.2.32.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.00 (sec) , antiderivative size = 851, normalized size of antiderivative = 6.45 \[ \int \frac {(a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=a \left (\sqrt {\cos (c+d x)} (1+\cos (c+d x)) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {(3 A+5 C) \csc (c) \sec (c)}{5 d}+\frac {A \sec (c) \sec ^3(c+d x) \sin (d x)}{5 d}+\frac {\sec (c) \sec ^2(c+d x) (3 A \sin (c)+5 A \sin (d x))}{15 d}+\frac {\sec (c) \sec (c+d x) (5 A \sin (c)+9 A \sin (d x)+15 C \sin (d x))}{15 d}\right )-\frac {A (1+\cos (c+d x)) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d \sqrt {1+\cot ^2(c)}}-\frac {C (1+\cos (c+d x)) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{d \sqrt {1+\cot ^2(c)}}+\frac {3 A (1+\cos (c+d x)) \csc (c) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{10 d}+\frac {C (1+\cos (c+d x)) \csc (c) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{2 d}\right ) \]

input
Integrate[((a + a*Cos[c + d*x])*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(7/2) 
,x]
 
output
a*(Sqrt[Cos[c + d*x]]*(1 + Cos[c + d*x])*Sec[c/2 + (d*x)/2]^2*(((3*A + 5*C 
)*Csc[c]*Sec[c])/(5*d) + (A*Sec[c]*Sec[c + d*x]^3*Sin[d*x])/(5*d) + (Sec[c 
]*Sec[c + d*x]^2*(3*A*Sin[c] + 5*A*Sin[d*x]))/(15*d) + (Sec[c]*Sec[c + d*x 
]*(5*A*Sin[c] + 9*A*Sin[d*x] + 15*C*Sin[d*x]))/(15*d)) - (A*(1 + Cos[c + d 
*x])*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]] 
^2]*Sec[c/2 + (d*x)/2]^2*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcT 
an[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]* 
Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*Sqrt[1 + Cot[c]^2]) - (C*(1 + Co 
s[c + d*x])*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[C 
ot[c]]]^2]*Sec[c/2 + (d*x)/2]^2*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x 
 - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[ 
c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*Sqrt[1 + Cot[c]^2]) + (3*A* 
(1 + Cos[c + d*x])*Csc[c]*Sec[c/2 + (d*x)/2]^2*((HypergeometricPFQ[{-1/2, 
-1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c 
])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]] 
]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c 
]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c] 
^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sq 
rt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(10*d) + (C*(1 + 
 Cos[c + d*x])*Csc[c]*Sec[c/2 + (d*x)/2]^2*((HypergeometricPFQ[{-1/2, -...
 
3.2.32.3 Rubi [A] (verified)

Time = 0.74 (sec) , antiderivative size = 131, normalized size of antiderivative = 0.99, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.394, Rules used = {3042, 3511, 27, 3042, 3500, 27, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right ) \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 3511

\(\displaystyle \frac {2}{5} \int \frac {5 a C \cos ^2(c+d x)+a (3 A+5 C) \cos (c+d x)+5 a A}{2 \cos ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \int \frac {5 a C \cos ^2(c+d x)+a (3 A+5 C) \cos (c+d x)+5 a A}{\cos ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \int \frac {5 a C \sin \left (c+d x+\frac {\pi }{2}\right )^2+a (3 A+5 C) \sin \left (c+d x+\frac {\pi }{2}\right )+5 a A}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {1}{5} \left (\frac {2}{3} \int \frac {3 a (3 A+5 C)+5 a (A+3 C) \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x)}dx+\frac {10 a A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \int \frac {3 a (3 A+5 C)+5 a (A+3 C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {10 a A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \int \frac {3 a (3 A+5 C)+5 a (A+3 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {10 a A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (3 a (3 A+5 C) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx+5 a (A+3 C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx\right )+\frac {10 a A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (3 a (3 A+5 C) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+5 a (A+3 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {10 a A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (5 a (A+3 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 a (3 A+5 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )\right )+\frac {10 a A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (5 a (A+3 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 a (3 A+5 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )\right )+\frac {10 a A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (5 a (A+3 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 a (3 A+5 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {10 a A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\frac {10 a (A+3 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+3 a (3 A+5 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {10 a A \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 a A \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}\)

input
Int[((a + a*Cos[c + d*x])*(A + C*Cos[c + d*x]^2))/Cos[c + d*x]^(7/2),x]
 
output
(2*a*A*Sin[c + d*x])/(5*d*Cos[c + d*x]^(5/2)) + ((10*a*A*Sin[c + d*x])/(3* 
d*Cos[c + d*x]^(3/2)) + ((10*a*(A + 3*C)*EllipticF[(c + d*x)/2, 2])/d + 3* 
a*(3*A + 5*C)*((-2*EllipticE[(c + d*x)/2, 2])/d + (2*Sin[c + d*x])/(d*Sqrt 
[Cos[c + d*x]])))/3)/5
 

3.2.32.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 

rule 3511
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[ 
(-(b*c - a*d))*(A*b^2 + a^2*C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/( 
b^2*f*(m + 1)*(a^2 - b^2))), x] + Simp[1/(b^2*(m + 1)*(a^2 - b^2))   Int[(a 
 + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*(a*C*(b*c - a*d) + A*b*(a*c - b*d 
)) - ((b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f*x] + b 
*C*d*(m + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e 
, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]
 
3.2.32.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(701\) vs. \(2(168)=336\).

Time = 14.58 (sec) , antiderivative size = 702, normalized size of antiderivative = 5.32

method result size
default \(\text {Expression too large to display}\) \(702\)
parts \(\text {Expression too large to display}\) \(777\)

input
int((a+cos(d*x+c)*a)*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2),x,method=_RETURNV 
ERBOSE)
 
output
-4*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(1/2*C*(sin 
(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x 
+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2) 
)+1/10*A/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2 
*c)^2-1)/sin(1/2*d*x+1/2*c)^2*(24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6- 
12*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE 
(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+1/2*c)^4* 
cos(1/2*d*x+1/2*c)+12*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c) 
^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+8*sin 
(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin 
(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin( 
1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+1/2*A*(-1/6*cos(1/2*d*x+1/2*c 
)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c) 
^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/ 
2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2* 
d*x+1/2*c),2^(1/2)))+1/2*C/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1) 
*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c 
)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^ 
2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2*c)/(2*c 
os(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.2.32.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 221, normalized size of antiderivative = 1.67 \[ \int \frac {(a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {-5 i \, \sqrt {2} {\left (A + 3 \, C\right )} a \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 i \, \sqrt {2} {\left (A + 3 \, C\right )} a \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} {\left (3 \, A + 5 \, C\right )} a \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} {\left (3 \, A + 5 \, C\right )} a \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (3 \, {\left (3 \, A + 5 \, C\right )} a \cos \left (d x + c\right )^{2} + 5 \, A a \cos \left (d x + c\right ) + 3 \, A a\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{15 \, d \cos \left (d x + c\right )^{3}} \]

input
integrate((a+a*cos(d*x+c))*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2),x, algorith 
m="fricas")
 
output
1/15*(-5*I*sqrt(2)*(A + 3*C)*a*cos(d*x + c)^3*weierstrassPInverse(-4, 0, c 
os(d*x + c) + I*sin(d*x + c)) + 5*I*sqrt(2)*(A + 3*C)*a*cos(d*x + c)^3*wei 
erstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*I*sqrt(2)*(3*A 
+ 5*C)*a*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, 
cos(d*x + c) + I*sin(d*x + c))) + 3*I*sqrt(2)*(3*A + 5*C)*a*cos(d*x + c)^3 
*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d* 
x + c))) + 2*(3*(3*A + 5*C)*a*cos(d*x + c)^2 + 5*A*a*cos(d*x + c) + 3*A*a) 
*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^3)
 
3.2.32.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))*(A+C*cos(d*x+c)**2)/cos(d*x+c)**(7/2),x)
 
output
Timed out
 
3.2.32.7 Maxima [F]

\[ \int \frac {(a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

input
integrate((a+a*cos(d*x+c))*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2),x, algorith 
m="maxima")
 
output
integrate((C*cos(d*x + c)^2 + A)*(a*cos(d*x + c) + a)/cos(d*x + c)^(7/2), 
x)
 
3.2.32.8 Giac [F]

\[ \int \frac {(a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

input
integrate((a+a*cos(d*x+c))*(A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2),x, algorith 
m="giac")
 
output
integrate((C*cos(d*x + c)^2 + A)*(a*cos(d*x + c) + a)/cos(d*x + c)^(7/2), 
x)
 
3.2.32.9 Mupad [B] (verification not implemented)

Time = 2.31 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.14 \[ \int \frac {(a+a \cos (c+d x)) \left (A+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2\,C\,a\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,A\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,A\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{5\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,C\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

input
int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x)))/cos(c + d*x)^(7/2),x)
 
output
(2*C*a*ellipticF(c/2 + (d*x)/2, 2))/d + (2*A*a*sin(c + d*x)*hypergeom([-3/ 
4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c + d*x)^(3/2)*(sin(c + d*x)^2)^(1 
/2)) + (2*A*a*sin(c + d*x)*hypergeom([-5/4, 1/2], -1/4, cos(c + d*x)^2))/( 
5*d*cos(c + d*x)^(5/2)*(sin(c + d*x)^2)^(1/2)) + (2*C*a*sin(c + d*x)*hyper 
geom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x 
)^2)^(1/2))